In recent decades, many building owners have become more interested in saving energy, conserving water, and reducing their environmental footprint in general. However, designing buildings that are healthy for occupants is also important, and this has been emphasized by the coronavirus outbreak. We spend 90% of our time indoors, according to the US Environmental Protection Agency, and indoor air is typically 2 to 5 times more polluted than outdoor air.
Viruses are just one of many airborne threats that affect humans. Other hazards of biological origin include bacteria, mold spores, dust mites and pollen. Negative health effects have also been identified for substances like volatile organic compounds (VOC), particulate matter (PM) and nitrogen oxides (NOx). Carbon monoxide is especially dangerous, since a concentration of only 1% in the air causes loss of consciousness within minutes, and possibly death.
Every building design is unique, but there are three main strategies to improve air quality:
The most cost-effective approach is minimizing air pollution sources first, and then optimizing ventilation and air purification. The removal of air pollution sources brings a passive benefit, while the other two methods have an ongoing energy cost.
Current efforts to improve air quality are focusing on coronavirus prevention. However, there are many other airborne hazards that often get ignored. For example, volatile organic compounds are off-gassed by many construction materials and furniture, especially when new.
Indoor air quality starts with selecting the right construction materials during the design phase. Actually, many common construction materials are now available in low VOC versions. If you are planning to get the LEED certification for your next building project, these low emitting materials can help you score points.
All equipment and appliances that use combustion must have adequate venting, since combustion releases many harmful substances. Carbon monoxide is especially dangerous, being highly poisonous for humans.
Air humidity is not a pollutant, but air quality is negatively affected when humidity is not controlled. Harmful organisms like mold, dust mites and bacteria thrive with high moisture levels. On the other hand, viruses and other harmful particles stay airborne for longer with low humidity. For these reasons, the US EPA and ASHRAE recommend a relative humidity of 30% to 60%.
Regardless of how air moisture affects the new coronavirus, the air quality benefits of keeping a moderate RH have been widely studied.
Building ventilation systems are normally designed with prescriptive airflow values from ASHRAE standards. These values have been determined experimentally by ASHRAE, based on the type of building, floor area, and number of occupants. However, this is an indirect design approach, since ventilation systems don’t respond directly to air pollution levels.
The following design features can make ventilation systems smarter, and more capable of controlling indoor air quality:
Many building codes have established the prescriptive airflow values from ASHRAE as minimum requirements. When using smart ventilation controls, they must be configured to never reduce airflow below the values required by codes.
To deal with airborne pathogens, the combination of filtering and ultraviolet radiation is an effective addition for ventilation systems:
Indoor air quality improvements can help control respiratory illnesses in building interiors. However, keep in mind that IAQ measures are not a substitute for the guidelines from health authorities, such as social distancing and frequent handwashing.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
We firmly believe that the internet should be available and accessible to anyone, and are committed to providing a website that is accessible to the widest possible audience, regardless of circumstance and ability.
To fulfill this, we aim to adhere as strictly as possible to the World Wide Web Consortium’s (W3C) Web Content Accessibility Guidelines 2.1 (WCAG 2.1) at the AA level. These guidelines explain how to make web content accessible to people with a wide array of disabilities. Complying with those guidelines helps us ensure that the website is accessible to all people: blind people, people with motor impairments, visual impairment, cognitive disabilities, and more.
This website utilizes various technologies that are meant to make it as accessible as possible at all times. We utilize an accessibility interface that allows persons with specific disabilities to adjust the website’s UI (user interface) and design it to their personal needs.
Additionally, the website utilizes an AI-based application that runs in the background and optimizes its accessibility level constantly. This application remediates the website’s HTML, adapts Its functionality and behavior for screen-readers used by the blind users, and for keyboard functions used by individuals with motor impairments.
If you’ve found a malfunction or have ideas for improvement, we’ll be happy to hear from you. You can reach out to the website’s operators by using the following email
Our website implements the ARIA attributes (Accessible Rich Internet Applications) technique, alongside various different behavioral changes, to ensure blind users visiting with screen-readers are able to read, comprehend, and enjoy the website’s functions. As soon as a user with a screen-reader enters your site, they immediately receive a prompt to enter the Screen-Reader Profile so they can browse and operate your site effectively. Here’s how our website covers some of the most important screen-reader requirements, alongside console screenshots of code examples:
Screen-reader optimization: we run a background process that learns the website’s components from top to bottom, to ensure ongoing compliance even when updating the website. In this process, we provide screen-readers with meaningful data using the ARIA set of attributes. For example, we provide accurate form labels; descriptions for actionable icons (social media icons, search icons, cart icons, etc.); validation guidance for form inputs; element roles such as buttons, menus, modal dialogues (popups), and others. Additionally, the background process scans all of the website’s images and provides an accurate and meaningful image-object-recognition-based description as an ALT (alternate text) tag for images that are not described. It will also extract texts that are embedded within the image, using an OCR (optical character recognition) technology. To turn on screen-reader adjustments at any time, users need only to press the Alt+1 keyboard combination. Screen-reader users also get automatic announcements to turn the Screen-reader mode on as soon as they enter the website.
These adjustments are compatible with all popular screen readers, including JAWS and NVDA.
Keyboard navigation optimization: The background process also adjusts the website’s HTML, and adds various behaviors using JavaScript code to make the website operable by the keyboard. This includes the ability to navigate the website using the Tab and Shift+Tab keys, operate dropdowns with the arrow keys, close them with Esc, trigger buttons and links using the Enter key, navigate between radio and checkbox elements using the arrow keys, and fill them in with the Spacebar or Enter key.Additionally, keyboard users will find quick-navigation and content-skip menus, available at any time by clicking Alt+1, or as the first elements of the site while navigating with the keyboard. The background process also handles triggered popups by moving the keyboard focus towards them as soon as they appear, and not allow the focus drift outside of it.
Users can also use shortcuts such as “M” (menus), “H” (headings), “F” (forms), “B” (buttons), and “G” (graphics) to jump to specific elements.
We aim to support the widest array of browsers and assistive technologies as possible, so our users can choose the best fitting tools for them, with as few limitations as possible. Therefore, we have worked very hard to be able to support all major systems that comprise over 95% of the user market share including Google Chrome, Mozilla Firefox, Apple Safari, Opera and Microsoft Edge, JAWS and NVDA (screen readers), both for Windows and for MAC users.
Despite our very best efforts to allow anybody to adjust the website to their needs, there may still be pages or sections that are not fully accessible, are in the process of becoming accessible, or are lacking an adequate technological solution to make them accessible. Still, we are continually improving our accessibility, adding, updating and improving its options and features, and developing and adopting new technologies. All this is meant to reach the optimal level of accessibility, following technological advancements. For any assistance, please reach out to
New York, NY
Phone: +1 (212) 647-7399
Email: support@AMAST.com